来源: 核动力蜗牛 电机产品技术前哨

在体积更小、功率更高追求驱动下,电机的转速一路攀升,从早期的两三千转,一直攀升到几万甚至几十万转。更高的转速使得功率密度和原材料利用率提高。因此高转速是强趋势,以新能源驱动为例,丰田Prius推出的第一代产品最高转速才6000rpm,到目前的第四代产品转速达到17000rpm。 本期我们跳出新能源领域,以更高的视角去看看转速电机的应用场合及背后的关键技术。

01

怎么定义高速电机

什么是高速电机,没有明确的边界定义。一般超过10000rpm都可以称为高速电机。也有用转子旋转的线速度来定义,高速电机的线速度一般大于50m/s,转子的离心应力和线速度的平方成正比,因此按线速度划分反应了转子结构设计难易程度。国外有学者采用速度和根号下功率乘积来定义高速电机,这种划分即考虑了转子的难易程度,又考量了电机的能量大小,更加科学合理。按此标准可以将高速电机定义为高速超高速两大类。

高速电机和超高速电机的区别在于功率和转速的乘积大小。我们用三个案例来理解这个概念:

案例一是小家电里非常著名的戴森电吹风电机,这个电机是11万转1600w,它的根号下功率和转速的乘积为:1.39*10^5,在左侧的图中,在高速\超高线分界线以下,属于高速电机;案例二为Integral Powertrain公司开发的车用驱动电机,2万转450kw, 它的根号下功率和转速的乘积为:4.24*10^5;这个乘积越大代表了高速程度越大,难度更高,这和我们的直觉是符合的;案例三Honeywell的飞机用驱动电机,2万转1000kw,它的根号下功率和转速的乘积为:6.3*10^5,属于超高速电机的范围,采用的技术也更加先进;

如果单纯就高速工作点而言,电机的难度随功率和转速乘积呈阶梯上升,因此我们可以用这个指标来评判高速电机的高速化程度

02

高速电机的应用场合

理解一个电机,最好是从应用角度去了解,高速电机的应用正在以爆炸式的方式在扩展,我们大致按高速程度来排序,有如下这些应用。

应用一:电动工具

下图是westwind公司的电转产品,200w@300krpm,采用无铁芯的PCB绕组工艺,并且将控制芯片也集成在内,体积非常小巧,这种电转也可以用在牙科等医疗设备上。

应用二:分子泵

分子泵是一种获取高真空的常用物理设备,也可以用于分离空气,获得高清洁空气。这种应用的电机转速可以达32krpm@500w,可以采用感应电机的方案,也可以采用集中绕组永磁电机的方案来设计。

应用三:分离储能

飞轮储能的细分领域有很多,有飞机上用的飞轮储能,有电站用的飞轮储能,下面这个例子是车用驱动的飞轮储能产品,其概念相当于混动汽车的电池储能或者超级电容储能,当汽车需要爆发功率时,飞轮储能电机能够作为发电机将电供给给电源。下面这款储能电机功率为30kw转速为5万转,采用感应电机的方案,转子是个实心铁块。

应用四:涡轮增压

电子涡轮增压是近年出现的一种新技术,其作用是给低速时汽车发动机增压,以减缓涡流迟滞现象并提高扭矩爆发力。下图是博格华纳开发的一款10kw@十万转的产品,采用的是2极24槽的永磁电机结构,因为工作环境温度较高,除了高速外,这类电机的设计还需 控制磁钢损耗和温升。

应用五:微型燃气轮机

微型燃气轮机绝对是一种传奇产品,如下图所示大概一只铅笔长的机器能够迸发出50kw的功率,据说应用在汽车上能够减少95%的发动机体积,除了汽车外很多设备上都需要这种小型的引擎。它的工作原理如下图所示,需要一台永磁同步电机将燃烧产生的动能转化成电能。这台电机采用了2极6槽的结构。

应用六:高速空压机

高速空压机是目前最常见的一种大功率高速电机,转速在几万转左右,功率在100-700kw之间,一般采用磁悬浮轴承,通过电机驱动涡轮或者叶片给空气打压。高速直驱电机代替的原来低速电机+增速器的系统,具备结构紧凑、可靠性高的优点。这类电机常用的是表贴式永磁同步电机和感应电机两种类型,相关的厂家如下图所示。

下面这个案例的离心式风扇应该也算是高速空压机的一种,采用的是4极24槽的配合的SPM电机。采用永磁电机能提高效率并减小体积。

应用七:车用驱动电机

车用驱动电机仍然是当前最热的领域,乘用车主流的转速在16000rpm以内,更高速度的电机已经在陆续开发中。下图所示是某大小开发的25000rpm225kw的感应电机,外径290mm 叠高230mm,最大扭矩358Nm,采用的是水冷的结构。

为了提高功率密度,Integral Powertrain公司开发的 2万转450kw的永磁电机系统,最大扭矩900Nm,其重量仅有28kg,采用了先进的绕组喷油冷却,定子径向冷却、转子轴向冷却等一系列技术。和它配套的控制器是SiC平台。

无独有偶,AVL下一代2万转驱动电机产品也采用油冷永磁电机技术,电机功率达到230kw,相应的重量在45kg。

应用八:高速空压机

最后介绍另外一种皇冠上的电机,飞机用驱动电机。随着飞机电动化、半电动化的步伐加快,对高功率高速电机的需求也在上升。这将是另外一块热土,下图是一款300kw@35krpm的永磁电机,采用的是集中绕组永磁电机方案,电机重量在28.4kg。

更高功率的航空电机应用在混动飞机上,作为类似增程混动架构的核心,这类电机一般采用强迫风冷结构以利用高速气流,Honeywell的电机的功率可以达到1Mw,为了提高效率采用永磁电机多余感应电机。

令人怦然心动的高速电机应用举不胜举,大块处女地待我们开发,在看热闹的同时,我们还可以深入学习高速电机背后的核心技术。

03

高速电机的关键技术

高速、超高速的应用前景广阔但同时给电机带来了极高的挑战,我们将这些问题合并同类项后发现有六大类。分别是散热、选型、转子结构、振动噪音、高效设计、轴承。

散热的问题

电机损耗随转速几何级数提高, 高损耗产生的热使得电机温升极速提升,为维持高速运行,必须设计散热良好的冷却方式。我们能看到常见的高速电机冷却方式为:

“内强迫风冷”如下图所示,强冷风能够直接吹入电机内部带走绕组和铁芯上的热量,这种方式一般出现在空压机、鼓风机、飞机电机这类本来就有强风可利用的场合。“内油冷”在电机必须封闭防护,或者无强风的应用环境中,采用最多的是内油冷方式,比如AVL 设计的高速电机采用的 定子槽内油冷的方式的组合。有些电机也采用绕组喷油冷却+定子油冷+转子油冷等多种方式的组合。

为了实现高功率密度、发热和冷却是高速电机必须要面对的重要问题。

电机选型问题

永磁电机还是感应电机?还是开关磁阻等其它类型的电机,高速电机种类的选择一直是一个没有标准答案的问题。一般从功率密度和效率的角度出发,选择永磁电机比较有优势,而从可靠性出发选择感应电机和开关磁阻电机。但因为振动噪音较大,开关磁阻的应用较少。

下图是前人统计的不同转速和功率下高速电机的种类分配规律,将电机的"功率*转速值" 画成等高曲线,我们能够发现一些大致的脉络: "在超高的应用中感应电机居多,在高速的应用中感应电机和永磁电机共存"。只要遵循这条原则,我们就能在范围内根据需求选择电机类型。

散热的问题

高速电机的转子结构必须要克服的离心应力,一般在“高速”的范围内采用金属护套、转子本身结构(如Ipm的鱼骨架、IM的转子结构)等,而在“超高速”的范围内采用碳纤维缠绕,或者干脆将转子做成实心一体结构,如储能飞轮的电机。

大多数永磁高速电机采用的是转子护套的结构,此类设计也非常讲究,即要保护永磁体,又要防止护套失效。因此要尽量避免出现应力集中的情况,如下图所示,若磁钢不填满整个圆周,则会在护套和磁钢上都出现应力集中,这也就是为什么高速永磁电机都采用完整圆环磁钢的原因,如果做不成完整圆环也采用填充物将圆周填满。

振动噪音的问题

振动噪音的问题是高速电机一大拦路虎。相比普通电机,即有转子动力学产生的振动问题,比如转子的临界转速问题,轴的偏摆振动问题。也有高频电磁力产生的啸叫问题,高速电机的电磁力频率更高,分布范围更广,极易激起定子系统共振。

为了避免临界转速振动,高速电机的转子设计非常关键,需要作严格的模态分析和测试。在设计时需要将长径比作为优化变量:转子设计过粗短,能够提高临界转速的上限,不易发生共振,但转子克服离心应力的难度会增加。反过来转子设计的细长,离心强度问题改善,但临界转速下移,出现共振概率提高,而且电磁功率也会随之下降。因此转子的设计需要反复平衡,是高速电机设计的重中之重。

高效的问题

电机损耗随转速几何级数提高, 高损耗使得电机效率快速衰减,为了实现高效,必须治理好各类损耗。以铁耗为例,为了降低涡流损耗,一般采用0.10mm、0.08mm的超薄硅钢片。超薄片能够降低涡流损耗但改善不了磁滞损耗,因此超薄片的铁耗磁滞损耗占大头,而普通片中涡流损耗占大头。改善磁滞损耗,可以从下面三条路子出发

优化磁路设计提高磁场正弦性、降低谐波铁耗;降低磁负荷、增加热负荷,降低基波铁耗;从材料选型出发,选择磁滞损耗较小的硅钢片;

除了铁耗之外,高速电机还要额外关注AC损耗,这些损耗是由于高频交变磁场渗透导致的,往往出现在磁钢外、金属护套、定子绕组表面。以治理磁钢的AC损耗为例,常用的方法是将磁钢分成多段,可以在径向分段也可以轴向分段。分段能够减小涡流环流面积,降低AC损耗,下图是分段之后涡流场的仿真,可知分段颗粒数越多AC损耗越小。除了分段之外还有更多的解决方案,限于篇幅不作展开。

高速电机中频率最高的磁场成分是由变频器的PWM载波导入的,因为脉冲调制的工作原理不可避免的出现高频电流谐波,这些电流又进一步产生出了高频磁场,高频磁场渗透入磁钢、定转子表面产生高频损耗。有些高速电机采用多电平驱动结构来改善PWM边频带谐波。

轴承的问题

高速电机的轴承选择是关键的问题,一般有磁悬浮、空气轴承、滑动机械轴承、滚珠机械轴承四大类可以选型。磁悬浮轴承应用在较大功率的场合,空气轴承应用在功率和尺寸较小的场合。机械轴承往往需要油润滑,在很多无油应用中受限制。

高速电机关键问题和技术还有很多,需要同时治理好这些问题,相比普通电机门槛高,难度大。需要采用力-磁-热-NVH多物理场耦合的方式来设计,是新的挑战也是新的机遇。

04

总结

本文介绍了高速电机的八大类应用和六种关键技术。总的来说高速电机是一种前景广泛,技术挑战极高的应用。有些技术看起来离我们很远,但从发展的角度我们能够看到“浅高速-中高速-超高速-超超高速”的脉络一直在演进。相比十年前,如今一两万的转电机已经司空见惯。因此高速化是“长期主义”,会缓慢的改变产业的格局。因此无论是寻找新领域机会,还是提升现有产品竞争力,高速化技术都是值得长期投资的领域。

最后推销一下自己,伏特动力是一家专业电机技术咨询公司,业务领域涉及高速电机、高密度扁线电机、低成本高磁阻少稀土永磁电机、电机噪音的诊断和治理等等。想避开同质化竞争,我们的技术引擎能够助你实现新思路、新产品。欢迎咨询合作